Strong Functors and Monoidal Monads
نویسنده
چکیده
In [4] we proved that a commutative monad on a symmetric monoidal closed category carries the structure of a symmetric monoidal monad ([4], Theorem 3.2). We here prove the converse, so that, taken together, we have: there is a 1-1 correspondence between commutative monads and symmetric monoidal monads (Theorem 2.3 below). The main computational work needed consists in constructing an equivalence between possible strengths 8tA,B: A c~ B -+ A T ~ B T
منابع مشابه
Update Monads: Cointerpreting Directed Containers
Containers are a neat representation of a wide class of set functors. We have previously [1] introduced directed containers as a concise representation of comonad structures on such functors. Here we examine interpreting the opposite categories of containers and directed containers. We arrive at a new view of a di↵erent (considerably narrower) class of set functors and monads on them, which we ...
متن کاملA Note on Actions of a Monoidal Category
An action ∗ : V × A−→ A of a monoidal category V on a category A corresponds to a strong monoidal functor F : V−→ [A,A] into the monoidal category of endofunctors of A. In many practical cases, the ordinary functor f : V−→ [A,A] underlying the monoidal F has a right adjoint g; and when this is so, F itself has a right adjoint G as a monoidal functor—so that, passing to the categories of monoids...
متن کاملConstructing Applicative Functors
Applicative functors define an interface to computation that is more general, and correspondingly weaker, than that of monads. First used in parser libraries, they are now seeing a wide range of applications. This paper sets out to explore the space of non-monadic applicative functors useful in programming. We work with a generalization, lax monoidal functors, and consider several methods of co...
متن کاملNotions of Computation as Monoids
There are different notions of computation, the most popular being monads, applicative functors, and arrows. In this article we show that these three notions can be seen as monoids in a monoidal category. We demonstrate that at this level of abstraction one can obtain useful results which can be instantiated to the different notions of computation. In particular, we show how free constructions ...
متن کاملGraphical Methods for Tannaka Duality of Weak Bialgebras and Weak Hopf Algebras
Tannaka duality describes the relationship between algebraic objects in a given category and functors into that category; an important case is that of Hopf algebras and their categories of representations; these have strong monoidal forgetful “fibre functors” to the category of vector spaces. We simultaneously generalize the theory of Tannaka duality in two ways: first, we replace Hopf algebras...
متن کامل